L. R.F.B.Monastir

Devoir de synthèse N°1

A.S:2020/2021

Mathématiques

M^r Zrafi Karim

Classe: 4ème M1

Durée: 3.h

Exercice N°1: (5 pts)

1/ Soit la suite U définie sur
$$\mathbb{N}$$
 par
$$\begin{cases} U_0 = 1 \\ U_{n+1} = \frac{2U_n}{\sqrt{U_n^2 + 1}} ; n \in \mathbb{N} \end{cases}$$

- a) Montrer que, pour tout entier naturel n, $1 \le U_n \le \sqrt{3}$.
- b) Montrer que la suite U est croissante.
- c) Montrer que la suite U est convergente et calculer sa limite.

2/ Soit la suite V définie sur
$$\mathbb{N}$$
, par: $V_n = \frac{\left(U_n\right)^2}{3 - \left(U_n\right)^2}$.

- a) Montrer que V est une suite géométrique dont on précisera la raison.
- b) Exprimer V_n et U_n en fonction de n.
- c) Retrouver alors $\lim_{n\to +\infty} U_n$.

3/ On pose
$$S_n = \sum_{k=0}^{n-1} (U_k)^2$$
 pour tout $n \in \mathbb{N}^*$.

- a) Montrer que pour tout $n \in \mathbb{N}^*$; $n \le S_n \le 3n$.
- b) Déterminer $\lim_{n\to+\infty} S_n$ et $\lim_{n\to+\infty} \frac{S_n}{n^2}$.

4/ On pose
$$T_n = \frac{S_n}{n}$$
; pour tout $n \in \mathbb{N}^*$.

- a) Montrer que $\forall n \in \mathbb{N}^*$ on $a: nS_{n+1} (n+1)S_n = nU_n^2 S_n$.
- b) En déduire que (T_n) est une suite croissante.
- c) Montrer que (T_n) est une suite convergente.
- 5/ Soit $p \in \mathbb{N}^*$ tel que n > p.

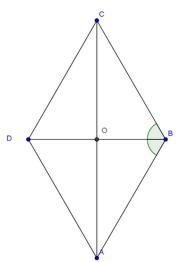
a) Montrer que :
$$(n-p)U_p^2 \le S_n \le n U_{n-1}^2$$
. En déduire que : $\frac{n-p}{n} U_p^2 \le T_n \le U_{n-1}^2$.

- b) Montrer que: pour tout $p \in \mathbb{N}^*$ on $a : U_p^2 \le \lim_{n \to +\infty} T_n \le 3$.
- c) En déduire la valeur de $\lim_{n\to+\infty} T_n$.

Exercice N°2: (4 pts)

Dans le plan, rapporté à un repère orthonormé direct, on considère un losange ABCD de centre O

tel que $(\overrightarrow{AB}, \overrightarrow{AD}) = \frac{\pi}{3} [2\pi]$ et I milieu de [AB].



1/ Soit f une isométrie qui laisse globalement invariant le losange ABCD.

- a) Montrer que f([AC]) = [AC].
- b) En déduire que f(O) = O.
- c) Déterminer alors les quatre isométries qui laissent globalement invariant le losange ABCD.
- 2/a) Donner la nature et les éléments caractéristiques des isométries suivantes :

$$f_1 = S_{\text{(AC)}} \circ S_{\text{(AB)}}$$
 et $f_2 = S_{\text{(CD)}} \circ S_{\text{(CA)}}$

b) Caractériser alors l'isométrie
$$g = R_{\left(C, -\frac{\pi}{3}\right)} \circ R_{\left(A, \frac{\pi}{3}\right)}$$
.

3/ On note E, F et G les symétriques respectives des points A, D et C par rapport au point B.

Soit h l'isométrie telle que : h(A) = E, h(B) = F et h(D) = B.

- a) Montrer que h n'admet aucun point fixe.
- b) En déduire que h est une symétrie glissante.
- c) Montrer que $t_{\overline{BD}}$ oh = $S_{(BD)}$.
- d) Donner alors le vecteur et l'axe de h.

Exercice N°3: (5 pts)

I/ On donne: $f(z) = z^2 - (i + 2\sin\theta)z + 1 - \cos\theta + i\sin\theta$; où $z \in \mathbb{C}$ et $\theta \in \mathbb{R}$.

1/ Montrer que : $-(2\cos\theta - 1)^2 = 4\sin^2\theta + 4\cos\theta - 5$.

2/ Résoudre dans \mathbb{C} l'équation f(z) = 0.

3/ On donne $g(z) = z^2 - (2\sin\theta - i)z + 1 - \cos\theta - i\sin\theta$; où $z \in \mathbb{C}$ et $\theta \in \mathbb{R}$.

a) Montrer que : g(z) = 0 équivaut à f(z) = 0.

b) Déduire alors dans \mathbb{C} les solutions de l'équation : g(z) = 0.

II/ Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v})

On donne les points $A\left(1+\frac{i}{2}\right)$; $B\left(-1+\frac{i}{2}\right)$; M_1 et M_2 d'affixes respectives : $z_1 = \sin\theta + i\cos\theta$ et $z_2 = \sin\theta + i\left(1-\cos\theta\right)$.

- 1/ Soit I le milieu de $\left[M_1M_2\right]$. Déterminer l'ensemble des points I lorsque θ varie dans $\mathbb R$.
- 2/ Soit l'application $\sigma: P \to P$; $M(z) \mapsto M'(z')$ tel que $z' = \overline{z} + i$.
 - a) Prouver que σ est une isométrie.
 - b) Déterminer $\sigma(A)$ et $\sigma(B)$ puis caractériser σ .
- 3/a) Déterminer et construire (Γ) l'ensemble des points M_1 lorsque θ varie dans $\mathbb R$.
 - b) En utilisant σ déduire la construction de (Γ') l'ensemble des points $\,M_2\,lorsque\,\theta\,$ varie dans $\,\mathbb{R}\,.$

Exercice N°4 (5 pts)

Soit f la fonction définie sur $]-\infty,-1] \cup [1,+\infty[$ par $f(x) = \sqrt{x^2-1} + x$.

- (ζ_f) sa courbe représentative dans un repère orthonormé (O,\vec{i},\vec{j}) .
- 1/ a) Etudier la dérivabilité de f à droite en 1 et à gauche en -1.
 - b) Préciser le domaine de dérivabilité de f puis calculer f'(x).
 - c) Dresser le tableau de variation de f
 - 2/a) Montrer que la droite D: y = 2x est une asymptote oblique à (ζ_f) .
 - b) Tracer (ζ_f) .
 - 3/ Soit g la restriction de f sur l'intervalle $[1,+\infty[$.
 - a) Montrer que g admet une fonction réciproque g^{-1} définie sur un intervalle J à préciser.
 - b) Calculer $g^{-1}(2)$ et $(g^{-1})'(2)$.
 - c) Tracer $\left(\zeta_{g^{-1}}\right)$ dans le même repère et préciser le domaine de dérivabilité de g^{-1} .
 - 4/ Soit h la fonction définie sur $\left[0, \frac{\pi}{2}\right[\text{ par } h(x) = g\left(\frac{1}{\cos x}\right).$
 - a) Vérifier que $h(x) = \frac{1 + \sin x}{\cos x}$, pour tout $x \in \left[0, \frac{\pi}{2}\right[$.
 - b) Montrer que h est une bijection de $\left[0, \frac{\pi}{2}\right[$ sur un intervalle K que l'on précisera.
 - c) Montrer que h^{-1} est dérivable sur K et que $(h^{-1})'(x) = \frac{2}{1+x^2}$.